Tuesday, May 12, 2009

VSS Conference Day 4: My Poster

This poster was presented at VSS Conference 2009 [link to VSS website], morning session [download poster pdf]. This study investigated the effect of task instructions on repetition suppression in the brain. Repetition suppression refers to the phenomenon that the brain response to repeated stimuli is usually reduced or attenuated. It is thought that such reduction in brain response reflects less neuronal recruitment, and hence, a more "efficient" way of processing the same information.
In this study, however, I postulated that under certain circumstances, the brain requires more neuronal recruitment in order to effectively process information for task demands. That is, repetition suppression becomes inefficient because it reduces the degrees of freedom that the brain can use to manipulate existing representations.

The study evaluated brain response in the fusiform region to face-pairs morphed at different levels of similarity. The idea is that the more similar face-pairs are, the more repetition suppression should be observed in the fusiform face area. Participants viewed the face-pairs under two different task instructions. The first task made face-pair similarity irrelevant. In this task, repetition suppression was observed to repeated faces. In the second task, face-pairs were made critical as participants had to make same-different judgments about the pairs. In this task, repetition suppression was eliminated.

The idea here is that in the same-different judgment task, the brain has to represent faces as distinctinctively as possible so that subtle morph differences can be detected. Thus, repetition suppression is prevented, possibly from executive function areas that process task instruction and exert a top-down modulatory control in the fusiform area.

The study also shows that there are individual differences in participants ability to exert this top-down modulation to regulate repetition suppression in the fusiform regions. This study was also performed in older adults, which will be reported in a subsequent research article. Briefly though, it is thought that older adults show declines in behavioral performance because of less distinctiveness in cognitive representations. This design is thus useful as a means to measure and related distinctinveness of representations in the brain and how that affects behavior.

No comments:

Post a Comment